Sliding Window Query Processing over Data Streams
نویسنده
چکیده
Database management systems (DBMSs) have been used successfully in traditional business applications that require persistent data storage and an efficient querying mechanism. Typically, it is assumed that the data are static, unless explicitly modified or deleted by a user or application. Database queries are executed when issued and their answers reflect the current state of the data. However, emerging applications, such as sensor networks, real-time Internet traffic analysis, and on-line financial trading, require support for processing of unbounded data streams. The fundamental assumption of a data stream management system (DSMS) is that new data are generated continually, making it infeasible to store a stream in its entirety. At best, a sliding window of recently arrived data may be maintained, meaning that old data must be removed as time goes on. Furthermore, as the contents of the sliding windows evolve over time, it makes sense for users to ask a query once and receive updated answers over time. This dissertation begins with the observation that the two fundamental requirements of a DSMS are dealing with transient (time-evolving) rather than static data and answering persistent rather than transient queries. One implication of the first requirement is that data maintenance costs have a significant effect on the performance of a DSMS. Additionally, traditional query processing algorithms must be re-engineered for the sliding window model because queries may need to re-process expired data and “undo” previously generated results. The second requirement suggests that a DSMS may execute a large number of persistent queries at the same time, therefore there exist opportunities for resource sharing among similar queries. The purpose of this dissertation is to develop solutions for efficient query processing over sliding windows by focusing on these two fundamental properties. In terms of the transient nature of streaming data, this dissertation is based upon the following insight. Although the data keep changing over time as the windows slide forward, the changes are not random; on the contrary, the inputs and outputs of a DSMS exhibit patterns in the way the data are inserted and deleted. It will be shown that the knowledge of these patterns leads to an understanding of the semantics of persistent queries, lower window maintenance costs, as well as novel query processing, query optimization, and concurrency control strategies. In the context of the persistent nature of DSMS queries, the insight behind the proposed solution is that various queries may need to be refreshed at different times, therefore synchronizing the refresh schedules of similar queries creates more opportunities for resource sharing.
منابع مشابه
Querying Sliding Windows Over Online Data Streams
A data stream is a real-time, continuous, ordered sequence of items generated by sources such as sensor networks, Internet traffic flow, credit card transaction logs, and on-line financial tickers. Processing continuous queries over data streams introduces a number of research problems, one of which concerns evaluating queries over sliding windows defined on the inputs. In this paper, we descri...
متن کاملCausality Join Query Processing for Data Streams via a Spatiotemporal Sliding Window
Data streams collected from sensors contain a large volume of useful information including causal relationships. Causality join query processing involves retrieving a set of pairs (cause, effect) from streams of data. However, some causal pairs may be omitted from the query result, due to the delay between sensors and the data stream management system, and the limited size of the sliding window...
متن کاملSketch-based Querying of Distributed Sliding-Window Data Streams
While traditional data-management systems focus on evaluating single, adhoc queries over static data sets in a centralized setting, several emerging applications require (possibly, continuous) answers to queries on dynamic data that is widely distributed and constantly updated. Furthermore, such query answers often need to discount data that is “stale”, and operate solely on a sliding window of...
متن کاملProcessing Continuous Historical Queries over XML Update Streams
We address the problem of processing continuous historical queries over streams of XML data, returning continuous, exact answers. The stream data considered are tokenized XML data with embedded updates for inserting, removing, or replacing stream subsequences that correspond to complete XML tree nodes when they are fully materialized to trees. Our query language for expressing historical querie...
متن کاملIncremental Computation Of Aggregate Operators Over Sliding Windows
Sliding Window is the most popular data model in processing data streams as it captures finite and relevant subset of an infinite stream. This paper studies different Mathematical operators used for querying and mining of data streams. The focus of our study is on operators, operating on the whole data set. These are termed as blocking operators. We have classified these operators according to ...
متن کاملDELAY-CFIM: A Sliding Window Based Method on Mining Closed Frequent Itemsets over High-Speed Data Streams
Closed frequent itemset mining plays an essential role in data stream mining. It could be used in business decisions, basket analysis, etc. Most methods for mining closed frequent itemsets store the streamlined information in compact data structure when data is generated. Whenever a query is submitted, it outputs all closed frequent itemsets. However, the online processing of existing approache...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006